9 research outputs found

    Modeling and Lyapunov-designed based on adaptive gain sliding mode control for wind turbines

    Get PDF
    In this paper, modeling and the Lyapunov-designed control approach are studied for the Wind Energy Conversion Systems (WECS). The objective of this study is to ensure the maximum energy production of a WECS while reducing the mechanical stress on the shafts (turbine and generator). Furthermore, the proposed control strategy aims to optimize the wind energy captured by the wind turbine operating under rating wind speed, using an Adaptive Gain Sliding Mode Control (AG-SMC). The adaptation for the sliding gain and the torque estimation are carried out using the sliding surface as an improved solution that handles the conventional sliding mode control. Furthermore, the resultant WECS control policy is relatively simple, meaning the online computational cost and time are considerably reduced. Time-domain simulation studies are performed to discuss the effectiveness of the proposed control strateg

    Sveobuhvatan pregled LVRT mogućnosti i kliznog režima upravljanja vjetroagregata spojenog na mrežu s dvostruko napajanim asinkronim generatorom

    Get PDF
    In this paper, a comprehensive review of several strategies applied to improve the Low Voltage Ride-Through (LVRT) capability is presented for grid-connected wind-turbine-driven Doubly Fed Induction Generator (DFIG). Usually, the most proposed LVRT solutions in the literature based on: hardware solutions, which increase the system costs and software solutions, which increase the control system complexity. Therefore, the main objective of this study is to take into account grid requirements over LVRT performance under grid fault conditions using software solution based on Higher Order-Sliding Mode Control (HOSMC). Effectively, this control strategy is proposed to overcome the chattering problem and the injected stator current harmonics into the grid of the classical First Order Sliding Mode (FOSMC). Furthermore, the resultant HOSMC methodology is relatively simple; where, the online computational cost and time are considerably reduced. The LVRT capacity and effectiveness of the proposed control method, compared to the conventional FOSMC, are validated by time-domain simulation studies under Matlab on a 1.5 MW wind-turbine-driven DFIG.U ovom radu, prikazan je sveobuhvatan pregled strategija primjenjenih za poboljšanje sposobnosti rada tijekom prolaznih smetnji niskog napona mreže za vjetroagregat s dvostruko napajanim asinkronim generatorom (DFIG). Uobičajeno, većina predloženih LVRT rješenja u literaturi temelji se na: hardverskim rješenjima, što povećava troškove sustava i softverskih rješenja te složenost sustava upravljanja. Stoga je glavni cilj ovog istraživanja da se uključuje i zahtjevi mreže kroz ponašanje LVRTa u uvjetima mrežnih kvarova korištenjem softverskog rješenja zasnovanoga na kliznom režimu rada višeg reda (HOSMC). Efektivno, ova upravljačka strategija je predložena kako bi se prevladali oscilacije i ubacivanje harmonika struje statora u mrežu klasičnim metodama kliznog režima rada prvog reda (FOSMC). Nadalje, rezultantna metodologija HOSMC je relativno jednostavna; gdje su online računski zahtjevi i potrebno vrijeme značajno smanjeni. LVRT kapacitet i učinkovitost predložene metode upravljanja, u usporedbi s konvencionalnim FOSMC potvrđene su simulacijama u vremenskoj domeni u Matlabu na 1.5 MW vjetroagregatu s DFIG-om

    Dual Robust Control of Grid-Connected DFIGs-Based Wind- Turbine-Systems under Unbalanced Grid Voltage Conditions

    Get PDF
    In this chapter, a comparative analysis is made for doubly-fed induction-generator (DFIG) low-voltage ride-through (LVRT) solutions. It is supposed to improve the LVRT capability of DFIG under unbalanced grid voltage conditions by hardware or software solutions. Therefore, this chapter proposes a low-cost software LVRT solution based on an efficient control scheme of DFIG driven by a wind turbine. The proposed control scheme is based on dual-sequence decomposition technique and Lyapunov-based robust control (RC) theory. Under an unbalanced grid voltage conditions, the proposed control strategy not only eliminates effectively the oscillations of the active and reactive powers exchanged between the generator and the grid but also achieves the symmetrical and sinusoidal grid currents injection. Simulation analysis under MATLAB®/Simulink® has been carried out on a 1.5 MW DFIG-based wind-turbine-systems, and the results are presented and discussed to demonstrate the feasibility and the efficiency of the control strategy for a grid-connected application under unbalanced voltage supply. The proposed dual control scheme is shown to be able to successfully mitigate torque, stator power and currents pulsations as compared with the conventional vector control based on the single control scheme

    Simulation of the proposed combined Fuzzy Logic Control for Maximum Power Point Tracking and Battery Charge Regulation used in CubeSat

    No full text
    One of the most critical systems of any satellite is the Electrical Power System (EPS) and without any available energy, the satellite would simply stop to function. Therefore, the presented research within this paper investigates the areas relating to the satellite EPS with the main focus towards the CubeSat platform. In this paper, an appropriate EPS architecture with the suitable control policy for CubeSat missions is proposed. The suggested control strategy combines two methods, the Maximum Power Point Tracking (MPPT) and the Battery Charge Regulation (BCR), in one power converter circuit, in order to extract the maximum power of the Photovoltaic (PV) system and regulate the battery voltage from overcharging. This proposed combined control technique is using a Fuzzy Logic Control (FLC) strategy serving two main purposes, the MPPT and BCR. Without an additional battery charger circuit and without switching technique between the two controllers, there are no switching losses and the efficiency of the charging characteristic can be increased by selecting this proposed combined FLC. By testing a space-based PV model with the proposed EPS architecture, some simulation results are compared to demonstrate the superiority of the proposed control strategy over the conventional strategies such as Perturb and Observe (P&O) and FLC with a Proportional Integral Derivative (PID) controller

    Analysis and Suppression of Unwanted Turn-On and Parasitic Oscillation in SiC JFET-Based Bi-Directional Switches

    No full text
    Silicon Carbide (SiC)-based Bi-Directional Switches (BDS) have great potential in the construction of several power electronic circuits including multi-level converters, solid-state breakers, matrix converters, HERIC (high efficient and reliable inverter concept) photovoltaic grid-connected inverters and so on. In this paper, two issues with the application of SiC-based BDSs, namely, unwanted turn-on and parasitic oscillation, are deeply investigated. To eliminate unwanted turn-on, it is proposed to add a capacitor (CX) paralleled at the signal input port of the driver IC (integrated circuit) and the capacitance range of CX is also analytically derived to guide the selection of CX. To mitigate parasitic oscillation, a combinational method, which combines a snubber capacitor (CJ) paralleled with the JFET (Junction Field Effect Transistor) and a ferrite ring connected in series with the power line, is proposed. It is verified that the use of CJ mainly improves the turn-off transient and the use of a ferrite ring damps the current oscillation during the turn-on transient significantly. The effects of the proposed methods have been demonstrated by theoretical analysis and verified by experimental results

    CubeSat project: experience gained and design methodology adopted for a low-cost Electrical Power System

    Get PDF
    This paper focuses on experimented space projects run by universities, offering an effective design process to improve learning methods in space engineering. The approach used for the design of CubeSat Electrical Power System (EPS) will go through estimations, sizing, simulations, PCB design and end with an experimental test procedure for design validation. The main design criteria presented in this paper are low costs and effective reliability. To meet the first criterion, the Commercial-Off-The-Shelf (COTS) components are used during the design, which has become an effective path to put experimental payloads in orbit for minimal cost. In the second criterion, the function of some critical EPS components was replicated, such as circuits used for power maximization and battery charge regulation, by following a suitable algorithm embedded in MCU and hot/cold redundant analog integrated circuits. However, the choice was made on the state of the art of CubeSat components already tested. This approach of working will help new space engineers to think about optimal solutions for the design of the appropriate EPS for a CubeSat university project achievable on a limited budget. Finally, the necessary experiments of the designed EPS were carried out and the results were illustrated in the context below

    Feasibility Study of Wind Farm Grid-Connected Project in Algeria under Grid Fault Conditions Using D-Facts Devices

    No full text
    The use of renewable energy such as wind power is one of the most affordable solutions to meet the basic demand for electricity because it is the cleanest and most efficient resource. In Algeria, the highland region has considerable wind potential. However, the electrical power system located is this region is generally not powerful enough to solve the problems of voltage instability during grid fault conditions. These problems can make the connection with the eventual installation of a wind farm very difficult and inefficient. Therefore, a wind farm project in this region may require dynamic compensation devices, such as a distributed-flexible AC transmission system (D-FACTS) to improve its fault ride through (FRT) capability. This paper investigates the implementation of shunt D-FACTS, under grid fault conditions, considering the grid requirements over FRT performance and the voltage stability issue for a wind farm connected to the distribution network in the Algerian highland region. Two types of D-FACTSs considered in this paper are the distribution static VAr compensator (D-SVC) and the distribution static synchronous compensator (D-STATCOM). Some simulation results show a comparative study between the D-SVC and D-STATCOM devices connected at the point of common coupling (PCC) to support a wind farm based on a doubly fed induction generator (DFIG) under grid fault conditions. Finally, an appropriate solution to this problem is presented by sizing and giving the suitable choice of D-FACTS, while offering a feasibility study of this wind farm project by economic analysis
    corecore